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Corrections

PLANT BIOLOGY. For the article ‘‘Identification of inhibitors of
auxin transcriptional activation by means of chemical genetics in
Arabidopsis,’’ by Joshua I. Armstrong, Shiaulou Yuan, Joseph M.
Dale, Vanessa N. Tanner, and Athanasios Theologis, which
appeared in issue 41, October 12, 2004, of Proc. Natl. Acad. Sci.
USA (101, 14978–14983; first published October 4, 2004;
10.1073�pnas.0404312101), Fig. 1 contains an erroneous depic-
tion of compound D. This problem appears to be a result of an
internal database error early in our studies that propagated the
incorrect structure throughout our figure preparation process.
This correction does not affect the conclusions of the article. The
corrected figure and its legend appear below.

MEDICAL SCIENCES. For the article ‘‘Large-scale cDNA transfec-
tion screening for genes related to cancer development and
progression,’’ by Dafang Wan, Yi Gong, Wenxin Qin, Pingping
Zhang, Jinjun Li, Lin Wei, Xiaomei Zhou, Hongnian Li,
Xiaokun Qiu, Fei Zhong, Liping He, Jian Yu, Genfu Yao,
Huiqiu Jiang, Lianfang Qian, Ye Yu, Huiqun Shu, Xianlian
Chen, Huili Xu, Minglei Guo, Zhimei Pan, Yan Chen, Chao Ge,
Shengli Yang, and Jianren Gu, which appeared in issue 44,
November 2, 2004, of Proc. Natl. Acad. Sci. USA (101, 15724–
15729; first published October 21, 2004; 10.1073�pnas.
0404089101), the authors note that on page 15725, in paragraphs
2 and 3 under the subheading Measurement of Colony Formation
of SMMC7721 Cells and Focus Formation of NIH 3T3 Cells,
‘‘JCL-1�breast-cancer-associated gene’’ incorrectly appeared as
‘‘JCL-1�bacillus Calmette–Guérin 1.’’

www.pnas.org�cgi�doi�10.1073�pnas.0408124101

MEDICAL SCIENCES. For the article ‘‘Humanized anti-CD25 (da-
clizumab) inhibits disease activity in multiple sclerosis patients
failing to respond to interferon �,’’ by Bibiana Bielekova, Nancy
Richert, Thomas Howard, Gregg Blevins, Silva Markovic-Plese,
Jennifer McCartin, Jens Würfel, Joan Ohayon, Thomas A.
Waldmann, Henry F. McFarland, and Roland Martin, which
appeared in issue 23, June 8, 2004, of Proc. Natl. Acad. Sci. USA
(101, 8705–8708; first published May 25, 2004; 10.1073�
pnas.0402653101), the authors request that Joseph A. Frank,
Experimental Neuroimaging Section, Laboratory of Diagnostic
Radiology Research, National Institutes of Health, Bethesda,
MD 20892-1074, be added to the author list between Jennifer
McCartin and Jens Würfel. The online version has been cor-
rected. The corrected author and affiliation lines appear below.
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Fig. 1. A high-throughput screen for auxin signaling inhibitors. (A) BA3
seeds expressing GUS from an auxin-sensitive promoter were arrayed into
96-well microfilter plates (5–10 seeds per well) and grown in liquid culture for
5 days. Incubation of the seedlings with 5 �M NAA results in the tissue-specific
expression of GUS in the root elongation zone, easily visualized after incuba-
tion with 5-bromo-4-chloro-3-indolyl �-D-glucuronide (X-gluc). The inclusion
of an inhibitor of auxin signaling prevents GUS expression. (B) Structures of
the four inhibitors, compounds A–D, chosen for detailed analysis.

www.pnas.org�cgi�doi�10.1073�pnas.0408339101
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Humanized anti-CD25 (daclizumab) inhibits disease
activity in multiple sclerosis patients failing to
respond to interferon �
Bibiana Bielekova*, Nancy Richert*, Thomas Howard*, Gregg Blevins*, Silva Markovic-Plese*†, Jennifer McCartin*,
Joseph A. Frank‡, Jens Würfel*§, Joan Ohayon*, Thomas A. Waldmann¶, Henry F. McFarland*, and Roland Martin*�

*Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; †Department of
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Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, MD 20892-1074; §Institute of Neuroimmunology, Charité, Humboldt-
University Berlin, Schumannstrasse 20�21, D-10117 Berlin, Germany; and ¶Metabolism Branch, National Cancer Institute, National Institutes of Health,
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Contributed by Thomas A. Waldmann, April 14, 2004

Identifying effective treatment combinations for MS patients fail-
ing standard therapy is an important goal. We report the results of
a phase II open label baseline-to-treatment trial of a humanized
monoclonal antibody against CD25 (daclizumab) in 10 multiple
sclerosis patients with incomplete response to IFN-� therapy and
high brain inflammatory and clinical disease activity. Daclizumab
was very well tolerated and led to a 78% reduction in new
contrast-enhancing lesions and to a significant improvement in
several clinical outcome measures.

Multiple sclerosis (MS) is a chronic inflammatory demyeli-
nating disease of the CNS with suspected autoimmune

pathogenesis. The available treatments for MS are only partially
effective, and considerable numbers of treated patients retain
inflammatory CNS activity with contrast-enhancing MRI lesions
(CEL) and continue to accumulate clinical disability.

Limiting T cell expansion by blocking IL-2 signaling by means
of its high-affinity receptor that is expressed on activated T cells
(i.e., blocking IL-2R�-chain, CD25) inhibits solid-organ graft
rejection (1–3) and helps to restore tolerance in immune-
mediated uveitis (4). Based on analogies of pathogeneses be-
tween these conditions and aberrant T cell activity in MS, we
tested the effect of add-on therapy of daclizumab in MS patients
with incomplete clinical and MRI response to IFN-� therapy.

Materials and Methods
Trial Design. Eleven patients with relapsing-remitting (RR) or
secondary progressive (SP) MS were treated in this open-label
baseline vs. treatment phase II trial (Table 1). Inclusion criteria
included the following: age 18–65 yr and expanded disability status
scale (EDSS) (5) 1.0–6.5. Exclusion criteria included the following:
primary-progressive MS and concurrent medical conditions that
could influence the immune system or accumulation of disability.
Patients who were previously treated with therapies other than
IFN-� had to discontinue these therapies for at least 12 weeks.
Failure to respond to IFN-� was defined as follows: at least one MS
exacerbation or progression of sustained disability by at least 1
EDSS point during the preceding 18 months on therapy. Patients
were followed by monthly clinical and MRI examinations on IFN-�
monotherapy for 4 months. To initiate daclizumab dosing, we
stipulated at least 0.67 new CEL�month during this baseline period.
Daclizumab was administered i.v. at 1 mg�kg�dose 2 weeks apart
for the first 2 doses (month 0 & 0.5) and every 4 weeks thereafter
for a total of seven infusions. MS exacerbations were defined by
Schumacher’s criteria (6) and treated by i.v. methylprednisolone
(IVMP) therapy (1g�day � 5 days). MRI scans and clinical ratings
within 28 days of IVMP were disregarded and substituted by data
from the following month. Both baseline and treatment phases were
extended appropriately by 1 month per MS exacerbation to yield 4
baseline and 6.5 treatment months that were not affected by IVMP.

Primary outcome measures were new CEL and total number
of CEL at baseline (IFN-�) vs. combination therapy (IFN-� plus
daclizumab). Secondary outcomes (MRI) were as follows: T2
lesion volume (T2LV), volume of CEL, and T1-hypointensities
[black hole volume (BHV)]. Secondary outcomes (clinical mea-
sures) were as follows: exacerbation rate (cumulative number of
exacerbations�cumulative baseline or treatment months),
change in EDSS and Scripps Neurological Rating Scale (Scripps
NRS) (7), change in ambulation index, timed 25-foot walk, and
9-hole peg test (9-HPT), all baseline vs. treatment. The trial was
approved by the National Institute of Neurological Disorders
and Stroke institutional review board, and informed consent was
obtained from every patient.

MRI Collection and Analysis. Contiguous axial MRI images (3 mm �
42 axial slices) were acquired at 1.5 Tesla with T2-weighted�proton
density (PD)�fast spin echo (FSE), fluid attenuation inversion
recovery (FLAIR)-, and T1-weighted sequences before and after
contrast (Magnevist 0.1 mmol�kg; Berlex Laboratories, Cedar
Knolls, NJ) administration as described (8). CEL were recorded on
hard copy films by consensus of two neuroradiologists. T2 lesion
volume was determined by a semiautomated thresholding tech-
nique (PV-WAVE) (9). Black hole volume and volume of CEL
were determined from registered images (10) by using a semiau-
tomated thresholding program (Jeff Solomon, MRIPS, National
Institutes of Health) on MEDX (Sensor Systems, Sterling, VA)
applied to postcontrast T1WI, after verification of lesion colocal-
ization on T2WI or FLAIR images.

Statistical Analysis. Statistics were based on nonparametric com-
parisons of group medians by Signed Rank Test with predeter-
mined P value � 0.05 for statistical significance.

Results
The primary trial objective was to assess safety and tolerability of
daclizumab in MS. A total of 11 screened patients proceeded to the
dosing phase, and all received seven doses of daclizumab without
any serious adverse event (Table 1). We observed an increase in the
number of infections during the treatment phase (1 in 50 at baseline
vs. 5 in 67 cumulative months at treatment), but all of these were
mild urinary and upper respiratory tract infections that are common
in MS patients. Furthermore, 2 transient elevations of liver function

Abbreviations: CEL, contrast-enhancing lesions; EDSS, expanded disability status scale;
IVMP, intravenous methylprednisolone; MS, multiple sclerosis; NRS, neurological rating
scale.
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Table 2. Results for the primary and secondary outcome measures

Outcome measures
Baseline* group median

average � SD
Treatment* group median

average � SD
P value† %

improvement‡

Primary outcome measures: brain MRI
Number of new CEL 1.38 0.75 P � 0.004

2.92 � 3.16 0.63 � 0.48 78.42%
Number of total CEL 1.50 1.00 P � 0.002

3.58 � 3.95 1.06 � 1.22 70.39%

Secondary outcome measures: brain MRI
Volume of CEL (GdLV) 0.121 0.043 P � 0.014

0.231 � 0.302 0.063 � 0.080 72.72%
Volume of T2 hyperintense lesions 4.195 3.471 NS

4.793 � 3.554 4.654 � 3.414 2.90%
Volume of T1 hypointense lesions (black hole volume) 1.443 1.393 NS

1.912 � 1.879 1.907 � 1.980 0.26%

Secondary outcome measures: clinical measures
Exacerbation rate (no. of exacerbations per patient�year) 2.40 0.00 P � 0.047

1.92 � 1.78 0.37 � 0.78 80.72%
Kurtzke Expanded Disability Status Scale (EDSS; from

0 � best to 10 � worst)
2.94

3.31 � 1.72
2.72

3.07 � 1.90
NS

7.25%
Scripps NRS (from 100 � best to 0 � worst) 74.88 85.63 P � 0.048

75.48 � 13.79 82.54 � 13.22 9.35%
Ambulation index (from 0 � best to 10 � worst) 1.25 1.06 NS

1.80 � 1.61 1.58 � 1.45 12.22%
Timed 25-foot walk, s (average of two attempts per

each clinical visit)
4.33

5.09 � 2.13
4.31

4.86 � 1.82
NS

4.52%
9-hole peg test, (s) 22.07 20.65 P � 0.006

22.96 � 5.27 21.86 � 5.26 4.79%

*For each patient, an average of 4 baseline months is compared with an average of 6.5 treatment months. MRI and clinical data collected within 28 days of IVMP
therapy were disregarded and substituted by subsequent month data. The baseline and therapy periods were extended appropriately to yield full 4 months
vs. 6.5 months comparison for each patient.

†P value is based on nonparametric paired signed rank test.
‡Percentage of improvement is calculated from group averages.

Table 1. Patient characteristics: demographic data, clinical data, and adverse events

Patient
code

Sex�
race�age

MS
type*

IFN-�†

formulation�
neutral. Ab

MS
duration,

y‡

End-
baseline

EDSS§

End-
therapy
EDSS§

Baseline
NRS

(mean)¶

Therapy
NRS

(mean)¶

Baseline
exac. rate
No.�mo�

Therapy
exac. rate
No.�mo�

Adverse
events during

baseline

Adverse
events during

therapy

I** L** O** I** L** O**

MS-Z1 F�W�38 SP A�� 8.0 4.5 5.0 68.3 63.6 0�4 0�6.5 1 1
MS-Z2 F�W�27 SP A�� 3.3 2.5 2.0 81.5 84.9 1�5 0�6.5
MS-Z3 M�W�36 SP B�� 9.3 6.0 6.0 60.0 81.8 2�6 0�6.5 1
MS-Z4 F�W�49 RR B�� 24.0 3.5 3.0 66.3 78.3 2�6 1�7.5 1 1 1
MS-Z5 F�B�51 SP B�� 10.3 6.0 6.0 56.5 59.0 0�4 1�7.5 1
MS-Z6 F�W�42 RR B�� 7.9 3.0 3.0 83.5 86.6 2�6 0�6.5 1
MS-Z7 M�W�33 RR B�� 1.9 2.5 0.0 85.0 97.0 0�4 0�6.5 1 1 1
MS-Z8†† F�W�48 SP B�� 6.0 3.5 3.5 69.7 72.4 0�4 1�7.5
MS-Z9 M�W�23 RR B�� 1.0 2.0 2.0 94.8 89.6 2�6 0�6.5 1 1
MS-Z10 F�W�29 RR A�� 5.5 3.0 1.5 62.7 89.9 1�5 0�6.5 1
MS-Z11 F�W�40 RR B�� 6.7 1.5 1.0 93.3 98.0 0�4 0�6.5 2

Group medians or cumulative values 7.6 3.0 2.5 74.9 85.8 10�50 2�67 1 2 2 5 2 4

*RR, relapsing-remitting MS; SP, secondary progressive MS.
†A, Avonex; B, Betaserone; neutral. Ab, neutralizing antibodies; �, negative; �, positive.
‡Disease duration in years was calculated from the first symptom attributable to MS.
§EDSS at the end of baseline or treatment period that was sustained � 3 months � measure of sustained disability.
¶Average Scripps NRS score from baseline and treatment periods � clinical measure that includes monthly variations in clinical status.
�Exacerbation rate (exac. rate) is displayed as number of exacerbations per number of months during baseline or treatment periods. Note that, when exacerbation
occurred, the baseline or treatment period was extended by 1 month per 1 exacerbation because the MRI and clinical values within 28 days of IVMP therapy
were excluded from the analysis and were replaced by the next month’s values.
**I, infections (four urinary tract infections, two upper respiratory tract infections); L, abnormal laboratory values (transient elevation of LFTs); O, others

(transient headache, constipation, breast tenderness, iron-deficiency anemia, exacerbation of ongoing depression, surgery for kidney stones).
††Patient MS-Z8 received higher dose of daclizumab (2mg�kg i.v. q 2w) and was excluded from final analysis.

8706 � www.pnas.org�cgi�doi�10.1073�pnas.0402653101 Bielekova et al.
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tests (LFTs) and bilirubin occurred on daclizumab therapy. Other
adverse events (transient headache, constipation, breast tenderness,
iron-deficiency anemia, exacerbation of ongoing depression and
surgery for kidney stones) were either mild and did not require
therapy or were deemed unlikely to be due to daclizumab dosing.
Overall, the drug was very well tolerated, and all 11 patients
requested continued daclizumab therapy had this been allowed by
the protocol.

The secondary objective of the trial was to explore the efficacy
of daclizumab on brain inflammatory activity in MS. Enrolled
patients were characterized by high inflammatory and persistent
clinical activity despite therapy with IFN-�, and, in view of the
profound effect of IFN-� on CEL (11), these patients were
considered to have failed treatment. Based on previous experi-
ences with this trial design (12), we estimated that the combi-
nation therapy would have to lead to �60% decrease in CEL to
reach statistical significance in a cohort of 10 patients. As
demonstrated in Table 2 and Fig. 1, daclizumab therapy led to
78% decrease in new CEL and 70% decrease in total CEL as
compared with baseline. The cumulative lesion analysis (Fig. 1B)
demonstrates that this decline in CEL was not immediate but
developed gradually over 1.5–2 months.

One patient with extraordinarily high MRI inflammatory activity
(MS-Z8) was withdrawn from the final analysis because she re-
ceived higher daclizumab doses (2 mg�kg every 2 weeks) from
month 3.5 (Table 1 and Fig. 1A). She initially responded to

daclizumab at 1 mg�kg every 2 weeks but experienced a significant
rebound in CEL activity and MS exacerbation during the 4-week
dosing. We considered it unethical to withhold more aggressive
therapy and offered her discontinuation of treatment with dacli-
zumab and change to mitoxantrone vs. an attempt of higher
daclizumab dosing. She chose the latter and was given 2 mg�kg
every other week under a single patient IRB-approved exemption.
At this dose, she reached 68% reduction in new CEL (from an
average of 29 new CEL�month at baseline to 9.13 at treatment) and
stabilized clinically (Table 1). An additional patient was recruited
to reach 10 patients with 1 mg�kg daclizumab dosing.

The results of the secondary outcomes are presented in Table
2. Although all measures improved, the changes in T2 lesion
volume, black hole volume, EDSS, and timed 25-foot walk were
nonsignificant whereas the volume of CEL (73% reduction),
exacerbation rate (81% reduction), Scripps NRS (9%), and
9-hole peg test (5%) improved significantly.

Discussion
According to this open label baseline-to-treatment phase II trial of
daclizumab in MS patients with incomplete response to IFN-�
therapy, the addition of daclizumab seems safe and effective in
blocking inflammatory disease activity of the CNS. Although we
observed a slight increase in infections on treatment, the drug was
very well tolerated, and the extrapolated infection rate (1 in 13.4
patient-months) was below that reported in MS (1 in 9 patient-
months) (13). This result is in agreement with reported data from
treatment of uveitis patients, where even long-term administration
of daclizumab at equivalent doses did not lead to an increase in
infections (14). We selected MS patients with high persistent
inflammatory activity (average of 2.92 new CEL�month during
IFN-� therapy whereas only 2�11 patients had neutralizing Ab
against IFN-�) that are difficult to treat with conventional therapies
and eventually need aggressive immunosuppression to slow disease
progression. In this patient population, daclizumab add-on therapy
led to 78% decrease in new CEL and a stabilization of all markers
of disease progression. In contrast to IFN-� (12) or natalizumab
treatment (15), the reduction in CEL with daclizumab was not
immediate but decreased gradually over 1.5–2 months (Fig. 1B).
This finding suggests that daclizumab does not directly target the
blood–brain barrier but induces a gradual immunomodulatory
change that is responsible for the observed decrease in brain
inflammation. Due to the open-label nature of the trial, the effects
on clinical scales have to be interpreted with caution because they
could be influenced by subjective rating. However, the clear and
congruent improvement in objective clinical tests (i.e., 9-hole peg
test and timed 25-foot walk) and the positive trend in all outcomes
argue against significant subjective bias. Although the impressive
decrease in exacerbation rate (80%) may be influenced by regres-
sion to the mean in this unusually active MS cohort, the decrease
in CEL is not explained by this phenomenon. In this trial design (8,
12, 16) (and Fig. 1B-baseline), regression to the mean does not
occur in a cohort of �10 patients when CEL are averaged over 4–6
months.

In conclusion, daclizumab add-on therapy represents a clear
alternative to aggressive immunosuppression in MS patients with
unusually high brain inflammatory activity that cannot be con-
trolled by conventional immunomodulatory therapy. Positive ex-
perience regarding safety and efficacy has also been demonstrated
in a separate cohort of secondary progressive-MS patients under
open-label therapy.� Large, multicentric, placebo-controlled clinical
trials are needed to determine the extent of the clinical benefit of
daclizumab in typical MS population and whether daclizumab is
similarly effective as monotherapy.

�Rose, J. W. (2003) in Proceedings of the 55th Annual Meeting of the American Academy
of Neurology, 60, Suppl.1, A478–A479 (abstr.).

Fig. 1. Change in CEL on brain MRI during daclizumab trial: individual
patients (A) and cumulative lesion analysis (B). (A) Evolution of new CEL on
brain MRI during daclizumab trial. All 11 patients are presented. Group
average for each time point is calculated from data on 10 MS patients who
received 1 mg�kg daclizumab dosing. (B) Cumulative lesion analysis of new
and total CEL during daclizumab trial. Number of new (and total) CEL per each
month were added together for 10 MS patients and plotted as a cumulative
lesion analysis. There is proportional monthly accumulation of CEL in the
whole cohort (as evident from the linear relationship), and daclizumab add-on
leads to gradual decrease in cumulative CEL (change in slope) that becomes
evident after 1.5–2 months of therapy.
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